

Groundwater age determination with ⁸¹Kr/⁸⁵Kr in the framework of Nagra's exploratory boreholes for a deep geological repository

- highlights and lessons learned

Hydroisotop

M. Heidinger¹, G.D. Lorenz¹, E. Stopelli² and D. Traber²

Introduction and sampling

Nagra carried out multi-purpose exploratory boreholes (TBO) for a comparative evaluation of possible sites in northern Switzerland for a deep geological repository for radioactive waste. In the frame of these interdisciplinary works, precise pumping test (100 h) with groundwater sampling and analytical data interpretation focused to obtain reliable information on groundwater composition, evolution and residence times e.g. in the Malm aquifer (MAL, pumped flow rate < 5 L/min) above the low permeability sequence of the host rock (Opalinus Clay). Water sampling at the well head and for ⁸¹Kr/⁸⁵Kr with continuous flushing in IBC tanks (1-2) allowed the successful extraction of Kr gas (2) samples had to be spiked with well known Kr due to degassing effects).

Regional geological situation

ID #580

TRU1-MAL

(spiked)

30.09.2019

88

9

19.2

1.9

90.4

3.0

spiked

64.8

26.9

Geological Siting Regions Thrust Fault HLW Major Faults from 2D	Mesozoic (Tabular Jura s.l.) Mesozoic (Deformed Tabular Jura)	Note: Trigonodus Dolomite N
L/ILW Seismics Interpretation 3D Seismic Surveys Perimeter MAL-samples for ⁸¹ Kr/ ⁸⁵ Kr	 Mesozoic (Folded Jura) Permian Crystalline Basement 	Operating ruppe Claystones, argill. mari, anhydrite & gypsum & rock salt Very low hydraulic conductivity Image: Strongly sandy rule Image: Strongly sandy rule Strongly sandy rule Strongly sandy rule Image: Strongly sandy rule Image: Strongly sandy rule Strongly sandy rule Image: Strongly sandy rule Strongly sandy rule Image: Strongly sandy rule Image: Strongly sandy rule Image: Strongly sandy rule Image: Strongly sandy rule Image: Strongly sandy rule Image: Strongly sandy rule Image: Strongly sandy rule Image: Strongly sandy rule Image: Strongly sandy rule Image: Strongly sandy rule Image: Strongly sandy rule

Hydrochemical and stable water isotope composition

Na-Cl-type Br/Cl ratios close to seawater + Cl almost equal to extracted MAL pore waters

enriched isotope signatures almost equal to extracted MAL pore waters (complex evolution and mixing with meteoric end member)

Correction of air contamination using max. ⁸⁵Kr_{atm} (for upper ⁸¹Kr limit)

220	⁸⁵ Kr (atm) mea	asing at site)	y at BfS station Sch	auinsland / D						STA2-MAL	STA3-MAL	BUL1-MAL (spiked)	MAR1-MAL
200	 gas sample pre 	eparation at I	Hydroistop / D					samling date		22.02.2021	20.01.2021	18.06.2019	03.03.2020
180	Kr gas sample	purification a	at Univ. Bern / CH					⁸¹ Kr _m	pm ⁸¹ Kr	56	41	71	66
160 ي <mark>خ</mark>								±	pm ⁸¹ Kr	6	5	6	2
05 / udg 140	BUL1-MAL	-TRU1-MAL	-MAR1-MAI		-STA3-MAL -STA2-MAL			⁸⁵ Kr _{m (decay-corr)}	dpm/ccKr	45.7	30.2	14.7	4.7
³⁵ Kr (o			AR1-MAL			TA3-MAL TA2-MAL	STA2-MAI	±	dpm/ccKr	3.1	2.1	1.3	0.2
ື 120	•		M.		INAL 14	TRU1-MAL		max. ⁸⁵ Kr _{atm}	dpm/ccKr	101.3	101.3	110.2	77.5
100								±	dpm/ccKr	3.0	3.0	3.0	3.0
80	NAMM.M	Ň		$\sqrt{1}$			\bigvee	max. contamination	%	49.6	32.9	spiked	6.5
60	2019	2019	2020	2020	2021 2021	2021	2022	⁸¹ Kr _{corr}	pm ⁸¹ Kr	18.3	15.4	0.0	63.8
-	May	Sep	Jan May	Sep	Jan	Sep	Jan	±	pm ⁸¹ Kr	24.8	15.2	22.1	3.3

⁸⁵Kr_{atm} measured at BfS station Schauinsland (D) and dates for sampling, preparation and purification (Hydroisotop and Univ. Bern). The ATTA-analysis for ⁸¹Kr_m/⁸⁵Kr_m was performed at Argonne National Laboratory, USA.

Noble gas test for sample qualification

	sample		STA2-MAL	STA3-MAL	BUL1-MAL	MAR1-MAL	TRU1-MAL	Res
	recharge altitude	m asl	500	500	500	500	500	tem
	Salinity (s)	mol/L	0.01	0.01	0.01	0.01	0.01	CEb
	Ne	°C	100.0	22.1	69.2	8.7	4.6	and
95)	Ar	°C	100.0	17.3	83.3	5.7	4.4	anu

ults of noble gas recharge peratures using PR^a and (1 Fit) software models normalised isotope

"⁸¹Kr model age"

Results and Conclusions

We present a workflow for the evaluation of sample quality based on the suite of noble gas isotopes analysed. To account for sample contamination, we use max. ⁸⁵Kr_{atm} from the time series data of the BfS Schauinsland station to conservatively calculate the air contamination.

2.00E-08

AS-MOW

9.750

9.700

Noble gas isotope values versus Cl contents of MAL samples in a postulated mixing system of meteoric with marine end members (close to modern seawater) simplified using а approach^d.

Noble gas isotope values uncorrected due to elevated ²⁰Ne/²²Ne ratios.

Arrows indicate degassing effects or possible external gas flux.

The sampled Na-Cl-waters represent various degrees of mixtures between fossil marine components (devoid of ⁸¹Kr) and Pleistocene meteoric water. Owing to different solubility constraints, the resulting ⁸¹Kr/Kr ratios in these mixtures are considered to be predominantly indicative for the residence time of the younger component.

The derived ⁸¹Kr_{corr} results show up different sets of ⁸¹Kr model age ranges for the investigated sites in northern Switzerland.

A further assessment may require additional investigations to characterise the complex evolution of the marine components and sophisticated approaches for the noble gas correction of degassing during pumping and sampling.

Due to elevated gas contents, the need to spike two samples led to significantly higher uncertainties in the correction of contamination and spike.

nagra

Swiss National Cooperative for the Disposal of Radioactive Waste (Nagra) Wettingen, Switzerland www.nagra.ch

References:

^a Stute M., Forster M., Frischkorn H., Serejo A., Clarke J.F., Schlosser P., Broecker W.S. and Bonani G. (1995) Cooling of tropical Brazil (5°C) during the last glacial maximum. Science 269: 379-383

^b Aeschbach-Hertig W., El-Gamal H., Wieser M. and Palscu L. (2008) Modeling excess air and degassing in groundwater by equilibrium partitioning with a gas phase: modeling gas partitioning. Water Resources Research, 44, W08449, https://doi.org/10.1029/2007WR006454

^c Bryne D., Barry P., Lawson M. and Ballentine C. (2017) Noble gases in conventional and unconventional petroleum systems. Geological Society, London, Special Publications. 468. SP468.5. 10.1144/SP468.5., https://doi.org/10.1144/SP468.5

^d Gerber C., Vaikmäe R., Aeschbach W., Babre A., Jiang W., Leuenberger M., Lu Z.-T., Mokrik R., Müller P., Raidla V., Saks T., Waber H.N., Weissbach T., Zappala J.C. and Purtschert R. (2017) Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-vear timescale. Geochim Cosmochim Acta 205:187-210

For detailed information on the Nagra investigation program and results see http://nagra.ch