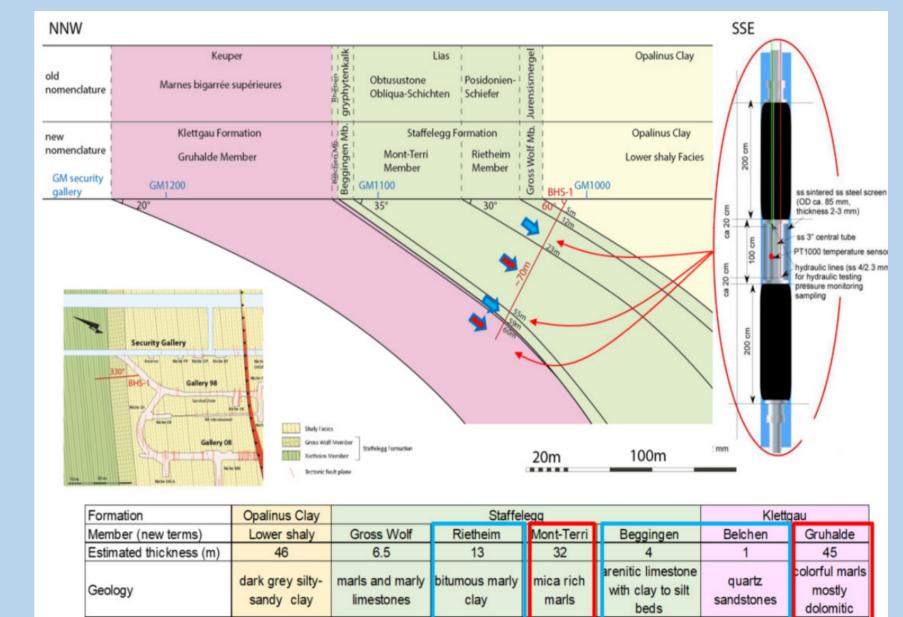



Groundwater age determination (⁸¹Kr, ¹⁴C etc.)

from an interval in the Beggingen Member of the calcareous Staffelegg Formation of Mont Terri Rock Laboratory

ID #574

Hydroisotop


G.D. Lorenz¹, M. Heidinger¹, M. Kühn², D. Jaeggi³

Introduction

Water sampling and isotope analysis from groundwater in the Beggingen Member of the Staffelegg Formation from the borehole BHS-1 in the Mont Terri Rock Laboratory (CH) as part of the HS and HS-A experiment focussed on the 'Hydrogeological survey of aquifers around the Opalinus Clay'. Water collecting and rinsing in an IBC tank over a period of about 4 weeks allowed the successful sampling of enough Kr gas for the measurement of ⁸¹Kr, though the water flow of about 0.25 L/min is very low.

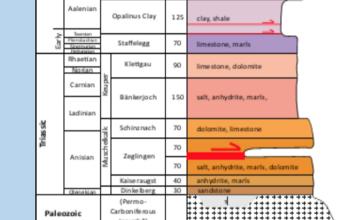
NW Mont Terri SSE

Geological and hydrological situation

Sampling and on-site measurement

BHS-1 borehole with sensor lines and the green outflow pipe (top), IBC tank with bottom outflow pipe, gas extraction device

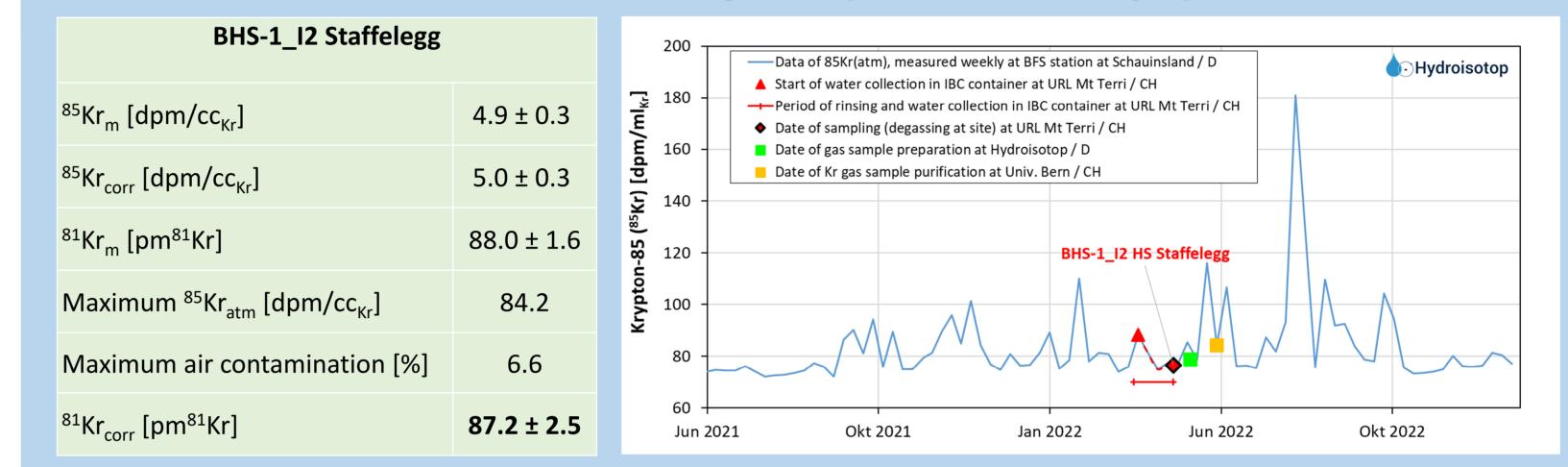
<image>

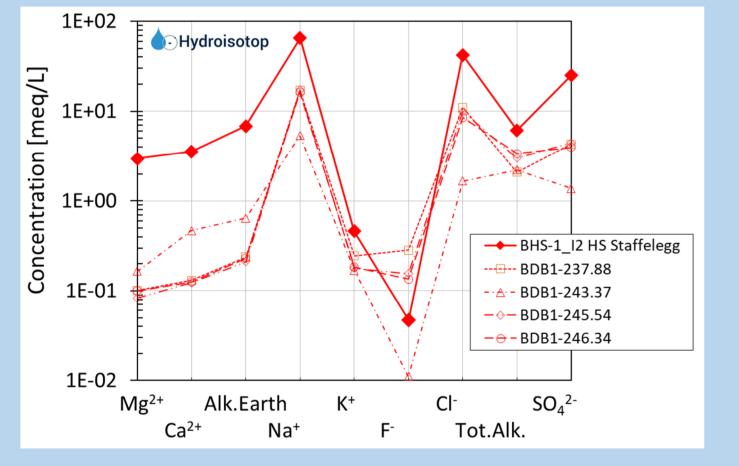

and the transporter	(nonoa)	during	the groundwater	sampling	
and gas extraction.					

Rinsing of IBC tank and water collection from 1st April to 29th April 2022 (1 month), filling of the tank lasts about 3 days (0.25 L/min), then overflowing on the top.

Water pressure was too low for reliable sampling for noble gas analysis (He, Ne, Ar, Kr, Xe) in copper tubes.

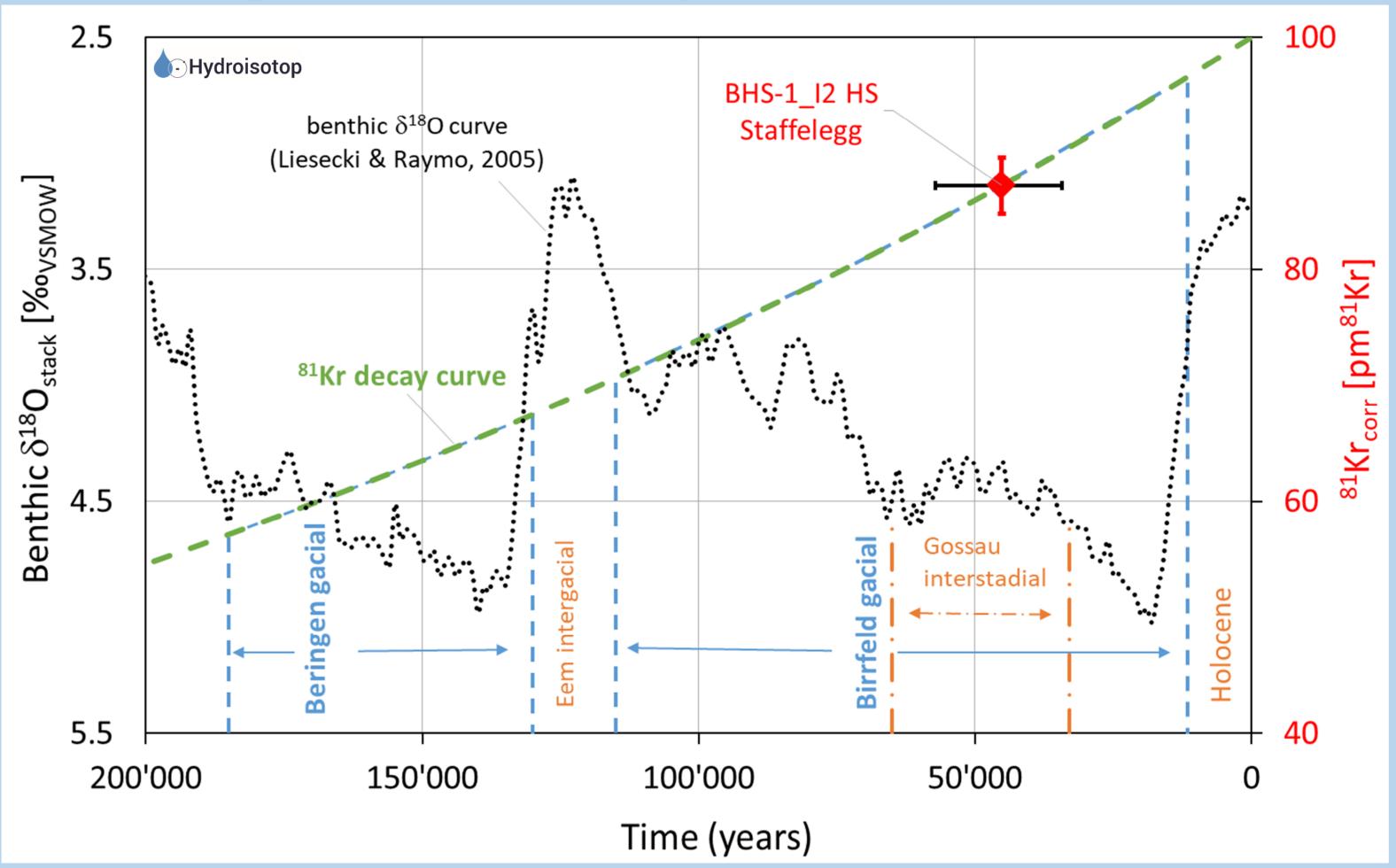
On-site measured O_2 is far too high for the an	alysed gas contents.
---	----------------------


On-site measurement at the	On-site measurement at the top of IBC			Gas composition		
		17:15		Extracted	Dissolved	
Temperature	[°C]	16.3				
Oxygen	[mg/L]	4.3		[Vol%]	[ccSTP/kg]	
Redox potential (calculated			H ₂	< 0.05	0.013	
as Eh [SHE])	[mV]	247	He	0.15	< 0.02	
Spec. electr. Conductivity			Ar	1.76	0.20	
(25 °C)	[µS/cm]	7'260	02	1.7	< 0.02	
pH value		7.73	N ₂	88.1	8.17	
Total Alkalinity (pH 4.3)	[meq/L]	6.2	CO ₂	7.9	9.88	
Base capacity (pH 8.2)	[meq/L]	0.44	CH ₄	0.074	0.0072	

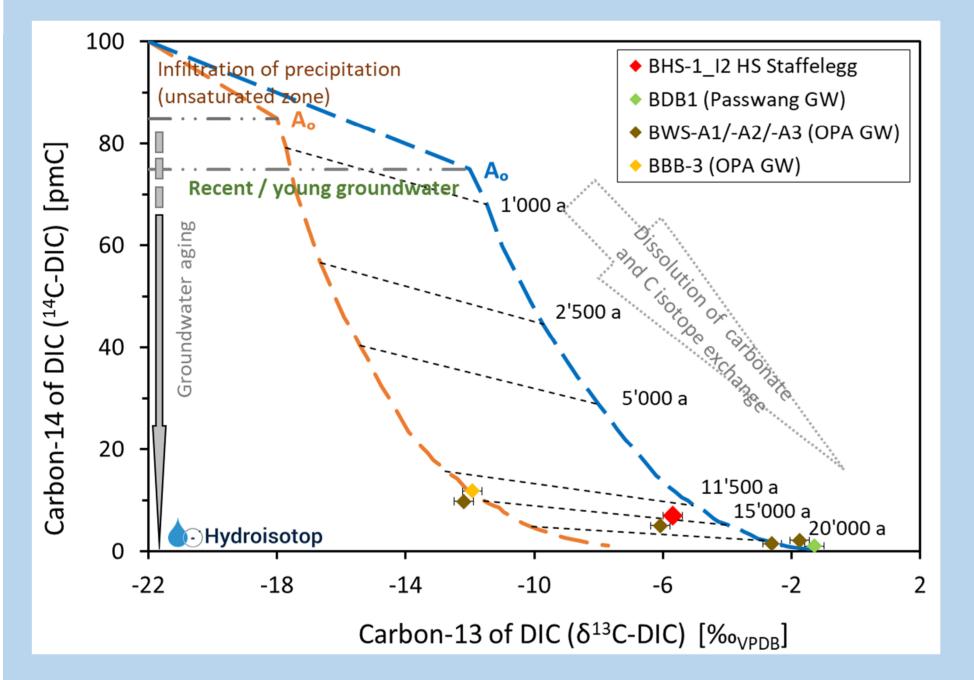

volter flow very low low moderate low moderate to high moderate low

Inflow of water was detected at a depth of 44.63 to 48.17 m in a porous section of arenitic limestone with clay to silt beds of the Beggingen Member (former called Gryphitenkalk). The inflow at 45.84 to 47.84 m depth was separated from the rest of the borehole by a multi packer system (MPS) for long-term pressure / temperature monitoring, resulting in a flow rate of approximately 0.25 L/min.

Correction of air contamination by ⁸⁵Kr (artificial isotope)


Hydrochemical composition

TDS 4	<u>Na-Cl</u> -SO ₄ 4.8 g/L, Br/Cl ratio:	0.0031					
Main anions and cations							
	[mg/L]	[meq/L]	[meq%]				
Na ²⁺	1'500	66.1	90.0				
K ⁺	18	0.5	0.6				
Ca ²⁺	71	3.6	4.8				
Mg ²⁺ Sr ²⁺	36	3.0	4.1				
Sr ²⁺	14	0.3	0.4				


Krypton-85 in air (weekly samples) measured at BfS station Schauinsland (D) and marked dates for IBC filling, gas extraction, preparation and purification for the sample BHS-1_I2.

"⁸¹Kr model age": 34 to 57 thousand years

Total Alkalinity		6.2	8.3
Cl⁻	1'500	42.3	57.0
SO ₄ ²⁻	1'230	25.6	34.5
Br⁻	4.7	0.06	0.08
F-	0.9	0.05	0.06

"¹⁴C-DIC model age": 12 to 15 thousand years

presenting the Diagram analysed $\delta^{13}C/^{14}C$ -DIC values together with modelled development carbon of isotopes with dissolution, exchange isotope and radiocarbon decay for different rock conditions (more siliciclastic in orange, carboniferous in blue).

A contamination of the C isotopes by secondary C sources (e.g. drilling fluid) is not excluded, But a contamination of 7 pmC seems unlikely.

Joint representation of the derived value for ⁸¹Kr_{corr} (with error bars) of the examined groundwater sample BHS-1_I2, the ⁸¹Kr decay curve presenting a ⁸¹Kr piston flow model age and the periods of the glacial and interglacial periods.

Parameter (methods)

	Lala	Lab

Results and Conclusions

3

Using ⁸⁵Kr for calculating possible air contamination, the measured result is interpreted for a ⁸¹Kr model age of approximately 34 to 57 thousand years. This implies a recharge during the Birrfeld glacial, possibly within the period of Gossau interstadial.

Parameter		Method	Lab preparation	Lab measurement
Hydrochemical compostion	<u>Na</u> - <u>Cl</u> -SO ₄ TDS 4.8 g/L	IC	Hydroisotop	Hydroisotop
³ H-H ₂ O	< 0.3 т∪	LSC	Hydroisotop	Hydroisotop
δ^{18} O-/ δ^{2} H-H $_{2}$ O	-9.86/-63.9 ‰ _{VSMOW}	CRDS	Hydroisotop	Hydroisotop
δ^{13} C-DIC	-5.7 ‰ _{VPDB}	IRMS	Hydroisotop	Hydroisotop
¹⁴ C-DIC	7.0 ± 0.1 pmC	AMS	Hydroisotop	ETH Zurich
⁸¹ Kr	88.0 ± 1.6 pm ⁸¹ Kr	ATTA	Hydroisotop / University Bern	Argonne Nat. Lab.
δ^{34} S/ δ^{18} O-SO ₄	18.0/12.1 ‰ _{VCDT/VAIR}	IRMS	Hydroisotop	Hydroisotop
⁸⁷ Sr/ ⁸⁶ Sr	0.707765 ± 0.000050	TIMS	Hydroisotop	Hydroisotop

Interpreting the ¹⁴C-DIC result of 7.0 ± 0.1 pmC gives a ¹⁴C model age of approximately 12 to 15 thousand years. The differences are maybe caused by a DIC contamination during the borehole exploration. The ¹⁴C content in the in-situ groundwater could consequently be lower resulting in a potential higher groundwater age.

The overall hydrochemical and isotope composition of the groundwater sample including ⁸¹Kr, ¹⁴C, ³H, $\delta^{18}O-/\delta^{2}H-H_{2}O$, $\delta^{34}S-/\delta^{18}O-SO_{4}$ and ⁸⁷Sr/⁸⁶Sr and the interpreted model ages support a groundwater system dominated by meteoric water derived during the Birrfeld glacial - maybe Gossau interstadial – and a small portion of a marine end member.

2 GFZ Helmholtz Centre POTSDAM German Research Centre for Geosciences Fluid Systems Modelling, Potsdam, Germany www.gfz-potsdam.de

Schweizerische Eidgenossenschaft Confédération suisse

Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Office of Topography swisstopo

Lisiecki, L.E., Raymo, M.E. (2005) A Pliocene-Pleistocene Stack of 57 Globally Distributed Benthic δ180 Records. Paleoceanography, 20, PA1003. https://doi.org/10.1029/2004PA001071

Lerouge, C., Blessing, M., Flehoc, C. Lahfid, A., Maubec, N. Wille, G. and Le Clech, A. (2022) HS-A Experiment: Mineralogical and geochemical characterization of the Staffelegg formation. Technical Note TN-2021-86. 47 pp

Lorenz, G.D., Heidinger, M. (2023) HS Experiment: Groundwater age determination from an interval in the calcareous Staffelegg Formation (Beggingen Member). Technical Note TN2023-02. 44 pp

Preisig, G., Valley, B. (2022) HS - HS-A Experiment: Hydrogeologic monitoring of the BHSD-1 borehole. Technical Note TN2021-96. 55 pp