USE OF ARTIFICIAL TRACERS AS TOOL TO QUANTIFY CONTAMINATION OF DEEP GROUNDWATER SAMPLES BY DRILLING FLUID IN THE FRAME OF THE NAGRA DEEP DRILLING PROJECT AND ENGINEERED BARRIERS FOR RADIOACTIVE WASTE

J. Pichlmaier¹, J. Iannotta¹, C. Mair¹, F. Eichinger¹, V. Winde¹, N. Giroud²

¹*Hydroisotop GmbH - Schweitenkirchen (Germany),* ²*formerly Nagra - Wettingen (Switzerland)*

Introduction

Ten artificial tracers were tested in lab experiments as tool to quantify contamination of deep groundwater samples by four drilling fluids (experiment 1) in regard to recovery rate (0, 3, 5, 101 days). Additionally, the five best tracers were added in powdered Opalinus Clay (OC) suspensions (10, 20, 50 g ad 100 ml demin. water) in order to simulate the uptake by solids in the drilling fluid (experiment 2, recovery rate). The tracers were analyzed by HPLC-FLD using silica columns or a graphite column depending on the used tracer. For the choice of tracer, the following properties must be considered: heat stability, sorption affinity, solubility and low detection limit.

Experiment 1: Tracer-Drilling Fluid-Interaction

Detection and quantification limits of the used tracers.			
limit of detection		limit of quantification	
	[µg/l]	[µg/l]	
Uranine	0.0009	0.003	
EOY	0.008	0.024	
SRB	0.004	0.014	
SRG	0.002	0.006	
PYR	0.01	0.03	
1368PTSA	0.002	0.006	
NaN	0.01	0.03	
1NSA	0.02	0.05	
15NDSA	0.01	0.03	
136NTSA	0.1	0.3	

Drilling Fluids

- \succ High Performance Water-Based Mud (HPWBM)
- Pure-Bore Drilling Fluid
- Polymer Drilling Fluid
- > Potassium Silicate Drilling Fluid

Tracers:

UR, EOY, SRB, PYR, 1368 PTSA, NaN, 136NTSA, 1NSA, 15NDSA

Experimental set-up:

UR, PTSA 10 ng Tracer + 10 ml Drilling Fluid \rightarrow 1µg/l Other Tracers 100 ng Tracer + 10 ml Drilling Fluid \rightarrow 10 µg/l

Sampling intervals

Polymer Drilling Fluid

start 3 days 5 days 7 days 26 days 101 days 100 μl 100 μl 100 μl 10 μl 10 µl 10 µl **Pure-Bore Drilling Fluid** 3 days 5 days 26 days 101 days start 100 μl 100 μl 100 μl 100 μl 100 μl "High Performance Water Based Mud" (HPWBM) 3 days 5 days 6 days 26 days 101 days start 100 μl 100 μl 100 μl 100 μl 100 µl 100 µl **Potassium Silicate Drilling Fluid**

Filtration of drilling fluids has shown adsorption effects, therefore sampling and dilution of homogenised sample in water demin. for analysis is recommended.

Experiment 2: Tracer – Rock-Interaction

Rock-material: Opalinus Clay

Tracers: UR, PYR, NaN, 1NSA, 15NDSA

8TH INTERNATIONAL

CONFERENCE

13-16 June 2022 - Nancy (France)

ON CLAYS IN NATURAL

CONFINEMENT

Experimental set-up:

mass of ground rock material [g]	water volume [ml]	total volume [ml]	density [g/cm³]	Tracer Concentration [µg/l]
10	96.5	100	1.06	10 (UR 1)
20	92.5	100	1.14	10 (UR 1)
50	81.0	100	1.36	10 (UR 1)
10 0 . I				

Sampling intervals

3 days 5 days 26 days 101 days start 100 µl 100 μl 100 μl 100 μl 100 µl

Conclusion

Evaluation of 10 tracers for use in different drilling fluids

Polymei	r Puro-Roro	High	Potassium

29 days 58 days start days 9 days 10 µl 10 µl 10 µl 10 µl 10 µl

Conclusion

Opalinus Clay Evaluation of 5 tracers for use in different rock solutions 15NDSA UR 3 **1NSA** NaN 4 **PYR**

The same experiments were performed under the equal conditions with sandstone and limestone.

			5	
	Drilling	Drilling	Performance	Silicate
	Fluid	Fluid	Water Based	Drilling
			Mud	Fluid
Uranine	1	1	3	2
EOY	7	9	8	10
SRB	6	3	6	9
SRG	5	2	4	1
PYR	9	8	10	7
1368PTSA	8	6	9	8
NaN	4	4	1	5
136NTSA	10	10	7	6
1NSA	2	5	2	3
15NDSA	3	7	5	4

good stability	
low detection limit	

- low interaction
- Iow sorption affinity

 \rightarrow good recovery rate \rightarrow usable tracers:

> \rightarrow Uranine \rightarrow SRG \rightarrow 1NSA \rightarrow NaN

 \succ not recommendable: EOY, SRB, 1368PTSA (maybe in higher concentrations)

---NaN ----1NSA

Outlook

The analyses can be done very selective in the laboratory by HPLC-FLD with a graphite column without filtration. The tracers showing a good recovery in the presence of OC and drilling fluids may be added in starting concentrations of 0,1-1 mg/L for specific drilling sections, increasing the reliability of the determination of groundor porewater sample contamination. Further details about the groundwater campaigns interested people can refer to Emiliano Stopelli and to Armin Pechstein (both Nagra).

Visit also the Talk on 15.06.2022 at 16:30 "Characterizing the natural barriers in Nagra's siting program: Contributions of pore- and groundwater investigations" D. Traber, J. Becker, N. Roy, E. Stopelli